DynaMesh®

Tailored Implants made of PVDF

DynaMesh®-LICHTENSTEIN

Implants for surgical treatmant of
inguinal hernia


For example: inguinal hernia, on the left

lichtenstein-detail

lichtenstein-elastische-sic

Less effort

DynaMesh®-LICHTENSTEIN is designed for safe and time-saving surgical handling. The elastic safety zone in the mesh, incorporated by using a special warp-knitting technique, makes it easier for the surgeon to achieve fold-free positioning of the implant.

lichtenstein-tunnelbildung

Less risk

The newly constructed slit design makes for perfect tunnel modulation with optimal pressure distribution. This prevents spermatic cord stenosis and possible postoperative complications.
In addition, the high tear propagation resistance at the end-point of the slit prevents mesh ruptures from occurring.

lichtenstein-spezielle-wirk

Fewer erosions

The atraumatic smooth selvedges in the slit reduce erosion formation on the spermatic cord [literature number 16].They decrease postoperative pain and enable the patient to resume normal activity sooner.


lichtenstein-detail-masse

Can be used in the left and right groin.


DynaMesh®-LICHTENSTEINProduct rangeUse and propertiesTechnical dataDownloadsLiterature

Allow for sufficient overlap when selecting mesh size.

DynaMesh®-LICHTENSTEIN Size: 6 cm x 11 cm PV110611F3 Unit = 3 EA / BX
DynaMesh®-LICHTENSTEIN Size: 6 cm x 11 cm PV110611F10 Unit = 10 EA / BX
DynaMesh®-LICHTENSTEIN Size: 7.5 cm x 15 cm PV110715F1 Unit = 1 EA / BX
DynaMesh®-LICHTENSTEIN Size: 7.5 cm x 15 cm PV110715F3 Unit = 3 EA / BX
DynaMesh®-LICHTENSTEIN Size: 7.5 cm x 15 cm PV110715F10 Unit = 10 EA / BX
DynaMesh®-LICHTENSTEIN visible Size: 7.5 cm x 15 cm PV170715F1 Unit = 1 EA / BX
Product DynaMesh®-LICHTENSTEIN
Field of application inguinal hernias
Surgical approach open
Surgical technique Lichtenstein
Mesh position extraperitoneal (subfascial)
Fixation suture / bonding
Optimal handling
gruene_punkte
Optimal patient safety
gruene_punkte
Optimal patient comfort
gruene_punkte
Green line marker
gruene_punkte
Atraumatic selvedges
gruene_punkte
visible technology
gruene_punkte

gruene_punkte Applies to all product sizes
gruene_punkte Only applies to selected product sizes

gruene_punkte Applies to all product sizes

Legends for the technical data

(a) Ratio of implant reactive surface area (thread surface) to implant surface area
(b) measured in the strip tensile test
(c) modified trouser tear test
(d) the Mühl method [6]
(e) Klinge’s classification [8]

Literature: Hernia

Contents

1. Polymer PVDF as Implant Material
2. Product Design – Essential Mesh Parameters
3. DynaMesh® visible Technology
4. Inguinal Hernia Repair
5. Ventral Hernia Repair
6. Ventral Hernia Prevention
7. Parastomal Hernia Repair
8. Parastomal Hernia Prevention
9. Hiatal Hernia Treatment
10. Mesh Fixation


1. Polymer PVDF as Implant Material

1. Klinge U, Klosterhalfen B, Ottinger AP, et al (2002)
PVDF as a new polymer for the construction of surgical meshes.
Biomaterials 23:3487–3493

2. Klink CD, Junge K, Binnebösel M, et al (2011)
Comparison of long-term biocompability of PVDF and PP meshes.
J Invest Surg 24:292–299. https://doi.org/10.3109/08941939.2011.589883

3. Gerullis H, Georgas E, Eimer C, et al (2011)
Evaluation of Biocompatibility of Alloplastic Materials: Development of a Tissue Culture In Vitro Test System.
Surgical technology international 21:21

5. Laroche G, Marois Y, Schwarz E, et al (1995)
Polyvinylidene fluoride monofilament sutures: can they be used safely for long-term anastomoses in the thoracic aorta?
Artif Organs 19:1190–1199

10. Berger D, Bientzle M (2008)
Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair!
Hernia 13:167–172. https://doi.org/10.1007/s10029-008-0435-4

11. Junge K, Binnebösel M, Rosch R, et al (2008)
Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placementin a rodent animal model.
Surgical Endoscopy 23:327–333. https://doi.org/10.1007/s00464-008-9923-y

16. Junge K, Binnebösel M, Kauffmann C, et al (2010)
Damage to the spermatic cord by the Lichtenstein and TAPP procedures in a pig model.
Surgical Endoscopy 25:146–152. https://doi.org/10.1007/s00464-010-1148-1

27. Mary C, Marois Y, King MW, et al (1998)
Comparison of the in vivo behavior of polyvinylidene fluoride and polypropylene sutures used in vascular surgery.
ASAIO J 44:199–206

52. Silva RA, Silva PA, Carvalho ME (2007)
Degradation studies of some polymeric biomaterials: Polypropylene (PP) and polyvinylidene difluoride (PVDF).
THERMEC 2006, Pts 1-5 539–543:573–576

68. Conze J, Junge K, Weiss C, et al (2008)
New polymer for intra-abdominal meshes–PVDF copolymer.
J Biomed Mater Res Part B Appl Biomater 87:321–328. https://doi.org/10.1002/jbm.b.31106

2. Product Design – Essential Mesh Parameters

6. Mühl T, Binnebösel M, Klinge U, Goedderz T (2008)
New objective measurement to characterize the porosity of textile implants. Journal of Biomedical Materials Research
Part B: Applied Biomaterials 84B:176–183. https://doi.org/10.1002/jbm.b.30859

8. Klinge U, Klosterhalfen B (2012)
Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes.
Hernia 16:251–258. https://doi.org/10.1007/s10029-012-0913-6

25. Klosterhalfen B, Junge K, Klinge U (2005)
The lightweight and large porous mesh concept for hernia repair.
Expert Rev Med Devices 2:103–117. https://doi.org/10.1586/17434440.2.1.103

52. Silva RA, Silva PA, Carvalho ME (2007)
Degradation studies of some polymeric biomaterials: Polypropylene (PP) and polyvinylidene difluoride (PVDF).
THERMEC 2006, Pts 1-5 539–543:573–576

53. Zhu L-M, Schuster P, Klinge U (2015)
An overview of crucial mesh parameters.
World Journal of Gastrointestinal Surgery

3. DynaMesh® visible Technology

7. Hansen NL, Barabasch A, Distelmaier M, et al (2013)
First In-Human Magnetic Resonance Visualization of Surgical Mesh Implants for Inguinal Hernia Treatment.
Invest Radiol. https://doi.org/10.1097/RLI.0b013e31829806ce

29. Kuehnert N, Kraemer NA, Otto J, et al (2011)
In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides.
Surgical Endoscopy 26:1468–1475. https://doi.org/10.1007/s00464-011-2057-7

51. Köhler G, Pallwein-Prettner L, Lechner M, et al (2015)
First human magnetic resonance visualisation of prosthetics for laparoscopic large hiatal hernia repair.
Hernia 19:975–982. https://doi.org/10.1007/s10029-015-1398-x

54. Muysoms F, Beckers R, Kyle-Leinhase I (2018)
Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh.
Surgical Endoscopy 32:2822–2830. https://doi.org/10.1007/s00464-017-5987-x

56. Köhler G, Pallwein-Prettner L, Koch OO, et al (2015)
Magnetic Resonance–Visible Meshes for Laparoscopic Ventral Hernia Repair.
JSLS : Journal of the Society of Laparoendoscopic Surgeons 19:e2014.00175. https://doi.org/10.4293/JSLS.2014.00175

62. Köhler G, Wundsam H, Pallwein-Prettner L, et al (2015)
Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment.
European Surgery 47:127–132. https://doi.org/10.1007/s10353-015-0319-7

69. Kuehnert N, Otto J, Conze J, et al (2014)
Time-Dependent Changes of Magnetic Resonance Imaging-Visible Mesh Implants in Patients

70. Hansen NL, Ciritsis A, Otto J, et al (2015)
Utility of Magnetic Resonance Imaging to Monitor Surgical Meshes: Correlating Imaging and Clinical Outcome of Patients Undergoing Inguinal Hernia Repair.
Invest Radiol. https://doi.org/10.1097/RLI.0000000000000148

71. Weyhe D, Klinge U, Uslar VN, et al (2019)
Follow Up Data of MRI-Visible Synthetic Meshes for Reinforcement in Large Hiatal Hernia in Comparison to None-Mesh Repair – A Prospective Cohort Study.
Front Surg:. https://doi.org/10.3389/fsurg.2019.00017

76. Lechner M, Meissnitzer M, Borhanian K, et al (2019)
Surgical and radiological behavior of MRI-depictable mesh implants after TAPP repair: the IRONMAN study.
Hernia. https://doi.org/10.1007/s10029-019-02019-2

4. Inguinal Hernia Repair

67. Garcia-Pastor P, Porrero-Carro J, et al. (2018)
Prospective Multicenter Blinded Randomized Study Comparing PP and PVDF Mesh Implants in Lichtenstein Procedure with Respect to Pain and Recurrence.
JSM Surgical Procedures 1:

72. Guadalajara Jurado JF, Suárez Grau JM, Bellido Luque JA, et al (2016)
Initial experience in laparoscopic bilateral inguinal hernia repair (TEP) with new anatomical mesh with large pore and low weight (Dynamesh Endolap) in short stay (6 months follow-up).

Ambulatory Surgery 22:

5. Ventral Hernia Repair

10. Berger D, Bientzle M (2008)
Polyvinylidene fluoride: a suitable mesh material for laparoscopic incisional and parastomal hernia repair!
Hernia 13:167–172. https://doi.org/10.1007/s10029-008-0435-4

14. Berger D, Bientzle M (2006)
Principles of laparoscopic repair of ventral hernias.
European Surgery 38:393–398. https://doi.org/10.1007/s10353-006-0284-2

56. Köhler G, Pallwein-Prettner L, Koch OO, et al (2015)
Magnetic Resonance–Visible Meshes for Laparoscopic Ventral Hernia Repair.
JSLS : Journal of the Society of Laparoendoscopic Surgeons 19:e2014.00175.
https://doi.org/10.4293/JSLS.2014.00175

57. Muysoms F, Beckers R, Kyle-Leinhase I (2018)
Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh.
Surgical Endoscopy 32:2822–2830. https://doi.org/10.1007/s00464-017-5987-x

58. Verbo A, Pafundi P, Manno A, et al (2016)
Polyvinylidene Fluoride Mesh (PVDF, DynaMesh®-IPOM) in The Laparoscopic Treatment of Incisional Hernia: A Prospective Comparative Trial versus Gore® ePTFE DUALMESH® Plus.
Surgical technology international 28:147–151

6. Ventral Hernia Prevention

55. Kohler A, Lavanchy JL, Lenoir U, et al (2019)
Effectiveness of Prophylactic Intraperitoneal Mesh Implantation for Prevention of Incisional Hernia in Patients Undergoing Open Abdominal Surgery: A Randomized Clinical Trial.
JAMA Surgery 154:109. https://doi.org/10.1001/jamasurg.2018.4221

74. Bravo-Salva A, González-Castillo AM, Vela-Polanco FF, et al (2019)
Incidence of Incisional Hernia After Emergency Subcostal Unilateral Laparotomy: Does Augmentation Prophylaxis Play a Role?
World J Surg. https://doi.org/10.1007/s00268-019-05282-7

7. Parastomal Hernia Repair

9. Berger D, Bientzle M (2007)
Laparoscopic Repair of Parastomal Hernias: A Single Surgeon‘s Experience in 66 Patients.
Diseases of the Colon & Rectum 50:1668–1673. https://doi.org/10.1007/s10350-007-9028-z

12. Berger D (2010)
Laparoskopische Reparation der parastomalen Hernie.
Der Chirurg 81:988–992. https://doi.org/10.1007/s00104-010-1933-3

60. Fischer I, Wundsam H, Mitteregger M, Köhler G (2017)
Parastomal Hernia Repair with a 3D Funnel Intraperitoneal Mesh Device and Same-Sided Stoma Relocation: Results of 56 Cases.
World Journal of Surgery 41:3212–3217. https://doi.org/10.1007/s00268-017-4130-4

62. Köhler G, Wundsam H, Pallwein-Prettner L, et al (2015)
Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment.
European Surgery 47:127–132. https://doi.org/10.1007/s10353-015-0319-7

63. Köhler G, Emmanuel K (2017)
Laparoscopic stoma relocation for parastomal hernia treatment by using a magnetic resonance visible three-dimensional implant.
ANZ Journal of Surgery 87:411–412. https://doi.org/10.1111/ans.12899

64. Köhler G, Fischer I, Wundsam H (2018)
A Novel Technique for Parastomal Hernia Repair Combining a Laparoscopic and Ostomy-Opening Approach.
Journal of Laparoendoscopic & Advanced Surgical Techniques 28:209–214.
https://doi.org/10.1089/lap.2017.0313

65. Köhler G, Mayer F, Wundsam H, et al (2015)
Changes in the Surgical Management of Parastomal Hernias Over 15 Years: Results of 135 Cases.
World Journal of Surgery 39:2795–2804. https://doi.org/10.1007/s00268-015-3187-1

66. Zhang H, Xie J, Miao J, Wu H (2016)
Hybrid Approaches for Complex Parastomal Hernia Repair.
Journal of the College of Physicians and Surgeons Pakistan 26:72–73

75. Köhler G (2019)
Prinzipien und Parallelen der Prävention und Reparation parastomaler Hernien mit Netzen.
Chirurg. https://doi.org/10.1007/s00104-019-01047-z

77. Szczepkowski M, Skoneczny P, Przywózka A, et al (2015)
Leading article: Methods paper New minimally invasive technique of parastomal hernia repair – methods and review.
wiitm 1:1–7. https://doi.org/10.5114/wiitm.2015.50052

78. Tully KH, Roghmann F, Pastor J, et al (2019)
Parastomal Hernia Repair With 3-D Mesh Implants After Radical Cystectomy and Ileal Conduit Urinary Diversion – A Single-center Experience Using a Purpose Made Alloplastic Mesh Implant.
Urology 131:245–249. https://doi.org/10.1016/j.urology.2019.05.006

8. Parastomal Hernia Prevention

15. Berger D (2007)
Prevention of parastomal hernias by prophylactic use of a specially designed intraperitoneal onlay mesh (Dynamesh IPST®).
Hernia 12:243–246. https://doi.org/10.1007/s10029-007-0318-0

59. Conde-Muíño R, Díez J-L, Martínez A, et al (2017)
Preventing parastomal hernias with systematic intraperitoneal specifically designed mesh.
BMC Surgery 17:. https://doi.org/10.1186/s12893-017-0237-7

61. Köhler G, Hofmann A, Lechner M, et al (2016)
Prevention of parastomal hernias with 3D funnel meshes in intraperitoneal onlay position by placement during initial stoma formation.
Hernia 20:151–159. https://doi.org/10.1007/s10029-015-1380-7

62. Köhler G, Wundsam H, Pallwein-Prettner L, et al (2015)
Magnetic resonance visible 3-D funnel meshes for laparoscopic parastomal hernia prevention and treatment.
European Surgery 47:127–132. https://doi.org/10.1007/s10353-015-0319-7

75. Köhler G (2019)
Prinzipien und Parallelen der Prävention und Reparation parastomaler Hernien mit Netzen.
Chirurg. https://doi.org/10.1007/s00104-019-01047-z

80. López-Borao J, Madrazo-González Z, Kreisler E, Biondo S (2019)
Prevention of parastomal hernia after abdominoperineal excision with a prophylactic three-dimensional funnel mesh.
Colorectal Dis 21:1326–1334. https://doi.org/10.1111/codi.14738

9. Hiatal Hernia Treatment

51. Köhler G, Pallwein-Prettner L, Lechner M, et al (2015)
First human magnetic resonance visualisation of prosthetics for laparoscopic large hiatal hernia repair.
Hernia 19:975–982. https://doi.org/10.1007/s10029-015-1398-x

71. Weyhe D, Klinge U, Uslar VN, et al (2019)
Follow Up Data of MRI-Visible Synthetic Meshes for Reinforcement in Large Hiatal Hernia in Comparison to None-Mesh Repair – A Prospective Cohort Study.
Front Surg 6:. https://doi.org/10.3389/fsurg.2019.00017

10. Mesh Fixation

79. Villalobos RN, Mias MC, Gas C, et al (2019)
Atraumatic laparoscopic intraperitoneal mesh fixation using a new laparoscopic device: an animal experimental study.
Hernia. https://doi.org/10.1007/s10029-019-02008-5

86. Wilson P (2020)
Laparoscopic intraperitoneal onlay mesh (IPOM) repair using n-butyl-2-cyanoacrylate (Liquiband Fix8TM) for mesh fixation: learning experience and short-medium term results.
Hernia. https://doi.org/10.1007/s10029-020-02144-3